

Connect to healthier.™

Baseline Assessments Of High School Athletes Registry: NFHS Presentation

Stefanie Bourassa, DPT Kristen Renner, PhD

Background

- United States: 250,000 ACL injuries yearly
 - Athletes ages 15-25
 - Approximately 1 in 60 adolescent athletes
 - 94% undergo ACL reconstruction
 - Loss in playing time: 9-12 months
 - Cost of diagnosis and treatment: \$38,121 to \$88,538 per injury
- Long term complications
 - Negative psychological affects on athletes
 - Up to 29% will have a secondary ACL injury
 - Meniscal tears
 - Up to 45% will develop osteoarthritis within 10 years

What can we do?

Before Injuries Occur

- Preventative programs exist
- Need a deeper understanding of what factors to target
- Need to be able to test these factors in the field
- Need more research on effectiveness of programming

After Injuries Occur

- More research on return to play protocols and guidelines
- Determine metrics that are easy to complete in the field to guide return to sport guidelines

Return to Play Testing Protocol

- Current return to play is guided by
 - MD recommendation &
 - ACL Battery testing performed by PTs and/or ATCs
- Testing includes:
 - Functional Movement Screen
 - Hop Test Series
 - 6-m Single limb hop test
 - Single limb triple hop test
 - Single limp cross over hop test
 - Landing Error Scoring System (LESS)
 - Strength testing
 - 3D motion analysis of dynamic movement

Can be completed in the field with minimal cost

Research Proposal Goals

- Create a database of baseline and recurring testing of athlete biomechanics on the aforementioned tests
- Understand what a healthy adolescent athlete looks like considering factors like: age, gender, sport etc
- Determine if any of the identified tests can predict injury for an athlete
- Compare right side to left side performance and determine any asymmetries that can lead to an injury
- Implement programming individualized to prevent injury

Methods

- Subjects: at least 300 high school athletes ages 13-18
 - Currently 234 enrolled
- Must play for the high school sports teams in which our sports medicine team services
 - Includes varsity, junior varsity and freshman teams
- Must be free of injury at the time of enrollment
- Completed:
 - Demographic/Injury History form
 - FMS
 - Hop series
 - LESS Test

Demographics collected

- Name, DOB, Grade in School
- Medical history
 - Updated each time a new test will occur
- Race, gender, ethnicity
- Sports participating and # seasons participate
 - In school and out of school participation
- Dance/no Dance
 - If yes, frequency and type
- Position(s) played for sport

Tests Completed

- FMS (scored out of 21)
- LESS (Scored out of 19)
- Hop Series
 - Single Hop
 - Triple Hop
 - Crossover Hop
 - 6 meter timed Hop
- For each hop series test a limb symmetry index was calculated $\frac{Distance_{Max}}{Distance_{Min}} * 100\%$
- Single, triple and crossover hop was also normalized to height for analysis

Statistics

- Shapiro-Wilk Test for Normality
 - Everything was non-normally distributed
- Kruskal-Wallis test to look at
 - Age
 - Gender
 - Single sport vs multisport
 - Primary sport
 - Race
 - Ethnicity

Variables Analyzed

- Single hop limb symmetry
- Triple hop limb symmetry
- Crossover hop limb symmetry
- 6m hop time limb symmetry
- FMS Score
- LESS Score
- LESS Risk
- Overall Risk
- Single hop distance (normalized to body height)

- Triple hop distance (normalized to body height)
- Crossover hop distance (normalized to body height)
- 6m hop time

Results: Demographics

222 Eligible entries

	Male (n=129)	Female (n=93)
Age (years old)	15.84±1.14	15.92±1.18
Height (inches)	68.58±6.67	64.34±3.00
Weight (lbs)	164.83±37.18	130.08±19.59

Results: Gender

Test	Male (n=129)	Female (n=93)	P-value
Single Hop LSI	94.7±4.5	92.7±6.1	0.017
Single Hop Risk	0.64 ± 0.73	0.90 ± 0.82	0.042
Overall Risk	1.03 ± 0.62	0.86 ± 0.58	0.045
Single Hop Norm.	0.95 ± 0.39	0.79 ± 0.13	< 0.001
Triple Hop Norm.	3.00 ± 1.04	2.46±0.39	< 0.001
Cross Hop Norm.	2.70 ± 1.03	2.15±0.40	< 0.001
6m Hop Time	2.04±0.43	2.32±0.42	< 0.001

Results: Youngest 25% and Oldest 25%

Test	Young (n=55)	Old (n=55)	P-value
FMS	14.3±2.6	15.7 ± 2.1	0.002
LESS	6.9±2.7	5.5 ± 2.8	0.026
LESS Risk	0.75 ± 0.65	0.40 ± 0.50	0.007
Overall Risk	1.20 ± 0.57	0.67 ± 0.50	< 0.001

Results: Single vs Multisport

Test	Single Sport (n=73)	Multi Sport (n=118)	P-value
LESS Risk	0.61 ± 0.49	0.48 ± 0.60	0.045
Single Hop Norm.	0.89 ± 0.51	0.90 ± 0.17	0.015
Triple Hop Norm.	2.72±1.35	2.84±0.52	0.008
Cross Hop Norm.	2.42 ± 1.27	2.53±0.58	0.010

Female Sports

- 6m LSI
 - Lacrosse 88.23±4.66 Soccer 94.69±3.84 p-value 0.031
- Single Hop Norm.
 - Volleyball 0.60 ± 0.06 Soccer 0.85 ± 0.13 p-value 0.049
- 6m Hop Time
 - Field Hockey 1.84 ± 0.15 Softball 2.51 ± 0.20 p-value 0.022
- Primary limitation: sample size of some sport teams

Male Sports

- Single Hop Norm
 - Football 0.89 ± 0.19 Soccer 1.06 ± 0.14 p-value 0.011
- 6 meter hop time
 - Baseball 1.60 ± 0.19 Football $2.15 \pm .50$ p-value 0.003
- Primary limitation: sample size of some sport teams

- Initially, overall risk score was significant
 - Once we account for completing multiple comparisons, nothing was significant
- No significant differences

Results: Ethnicity

• No significant differences for any variable of interest

Future Direction

- Resume enrollment at local high schools as Covid-19 precautions allow
- Continue testing enrolled participants through graduation
- Investigate the potential impact of
 - Previous injury history
 - Injuries that occurred during data collection
 - Sport type

Plans for Dissemination

Complete:

• Kristen Renner, Stefanie Bourassa. 2020. Baseline Assessment High School Athlete: Normative Functional Movement Values. American College of Sports Medicine. Digital meeting due to Covid-19.

Future Goals:

- Submit to ACSM again next year investigating some of our Future Directions questions
- Peer reviewed manuscript of Normative results
- Peer reviewed manuscript of our participants who were injured while in the study

Stefanie Bourassa

Stefanie.bourassa@hhchealth.org

Kristen Renner

Kristen.renner@hhehealth.org

